Sanatta matematiğin yeri nedir

+ Yorum Gönder
Yudumla ve Soru(lar) ve Cevap(lar) Bölümünden Sanatta matematiğin yeri nedir ile ilgili Kısaca Bilgi
  1. 1
    Ziyaretçi


  2. 2
    Forumacil
    Özel Üye





    Cevap: sanatta matematiğin yeri nedir


    sanatta matematiğin yeri nedir hakkında bilgi




    Matematik; "biçim, sayı ve çoklukların yapılarını, özelliklerini ve aralarındaki ilişkilerini us bilim yoluyla inceleyen ve sayı bilgisi, cebir, uzay bilim gibi dallara ayrılan bilim" olarak tanımlanmaktadır.
    “Matematik insan zekasına dayanan bir bilimdir.” tanımı matematiğin sadece sözlükte geçen anlamıdır. Ancak "Matematik nedir?" sorusunu tek bir tanımla tam olarak yanıtlamak oldukça güçtür. Matematik akıl yürütme, olaylara değişik açılardan bakma yani bir perspektif işidir.Olaylara matematik mantığı ile bakmak demek değişik çözüm yolları üretmek demektir.Bir olaya veya nesneye olabildiğince çok açıdan yaklaşabilmek matematiksel akıl yürütmenin temelini oluşturur.
    Sanat ;bir duygu , tasarı, güzellik vb.nin anlatımında kullanılan yöntemlerin tamamı veya bu anlatım sonucunda ortaya çıkan üstün yaratıcılıktır.
    Sanatın tanımında geçen “kullanılan yöntemlerin tamamı" ifadesindeki bir olay veya nesneye bütün bakış açıları ile yaklaşmak matematiksel düşünce yapısı ile örtüşmektedir. Bizce matematiğin sanatsal yönü de burada ortaya çıkar. Örneğin bir Mona Lisa tablosu ilk bakışta bir perspektif harikasıdır.Burada bile bir matematiksel yön vardır.3 açıdan baktığımızda 3 farklı tablo.Perspektif; üç boyutlu cisimleri, iki boyutlu bir düzlem üzerinde göstermek için kullanılan bir araçtır.Perspektif, bakış açısı, yeni bulgular matematiksel akıl yürütmenin temelidir.
    Estetik ise; Sanatsal yaratının genel yasalarıyla sanatta ve hayatta güzelliğin kuramsal bilimi, güzel duyu tanımı ile karşılaşırız.

    Resim sanatı aritmetiği(oran-orantıyı) ve geometriyi (perspektifi) doğal bir biçimde içinde barındırır.

    Boyutlar ve boyutlar arası geçişte de sanatsal bir yön aradığımızda da M.C.Escher ismi ile karşılaşırız. Matematiğin alt dalları olan; topoloji, permütasyon teorisi, geometri ve stereometri gibi dallarıyla uygulanması oldukça zor baskı tekniklerini kullanarak; emekleyen, yüzen, yükselen ama her zaman bir düzlemi kendi kopyalarıyla dolduran figürlerin oluşturduğu yaklaşık 150 eser ortaya koydu. Resim ve matematiği birleştiren eserleriyle tanınan Maurits Cornelis Escher eserlerinde yansımalara, sonsuzluğa, paradoks ve ****morfozlara yer verdi.Escher’in iç içe geçmiş bezemelerle dolu olan çizimlerini renklendirmedeki titizliği, renk simetrisi alanında çalışan matematikçi ve kristalogların daha sonraki çalışmalarına ışık tutmuştur.Bugün eserleri bu kavramları açıklamak için sık sık kullanılıyor. 1954'de Amsterdam'da yapılan Uluslararası Matematik Kongresi ile eşzamanlı gerçekleşen sergisi ve 1959 yılında yayınlanan ilk kitabı, "The Graphic Work ofM.C. Escher" (M.C. Escher'in Grafik Eserleri) bilim adamları ve matematikçiler üzerinde hâlâ süregelen bir etki yarattı. Escher, bu çalışmanın ardındaki asıl itici gücün "çevremizdeki doğada bulunan geometrik yasalara olan derin bir merak" olduğunu yazıyordu. Sanatçı, grafik çalışmaları ile fikirlerini betimlerken, bilimin temel fikirlerini belirgin görsel ****forlar kullanarak açıklıyordu.

    Escher çizimlerini gözüyle gördüklerinden değil aklından ilham alarak yapmaya başladı. İnsan gözlemleri ve anlayışındaki belirsizliklerin portresini yapıp, kavramlara görsel tanımlamalar vermeye başladı. Böyle yaparak da kendini matematik kurallarının hüküm sürdüğü bir dünyada buldu.


    DÜZLEMİ DÜZENLİ BÖLMEK:

    Escher "düzlemin düzenli bölünüşü" (regular division of the plane) adını verdiği bir kavrama tutkundu. Yaşamı boyunca, emekleyen, yüzen, yükselen, ama her zaman bir düzlemi kendi kopyalarıyla dolduran figürler yapmaktaki dehasını kanıtlayan 150'yi aşkın renkli çizim yaptı. Bu çizimler birbirinden farklı birçok simetriyi resmetmektedir. Ancak Escher için düzlemin bölünmesi sonsuzluğun ele geçirilmesi gibi birşeydi.

    Bu teknikle yaptığı resimlerinde sanatçı bir ya da birkaç motifi hiçbiri birbirinin üstüne gelmeyecek ve aralarında boşluk kalmayacak şekilde birbirlerini nasıl çevreleyebileceklerini araştırır. Bu yöntem matematikte düzlem doldurma problemi ile çakışır. Matematikçi daha global bir yaklaşımla bir düzlemde bulunan mozaik yapıdaki simetri gruplarını araştırıp tanımlamak ister. Escher bu işlemi çeşitli hayvan figürleri kullanarak fantastik bir şekilde icra eder.

    Simetri birçok matemetiksel ve fiziksel modele biçim veren yapısal bir kavramdır. Escher'in çiziminde kelebekler kağıdı rastgele dolduruyorlar gibi görünseler de, her biri hassas bir şekilde yerleştirilmiş ve çevrelenmiştir.Kelebeklerin kullanıldığı resminde olduğu gibi bir bezeme prensip olarak sonsuza kadar devam ettirilebilir ve bu sonsuzluğun bir öngörüsünü sağlayabilir. Escher sonsuzluğu tek bir kağıdın sınırları içerisinde görmekten mutluluk duyuyordu.

    Escher, "İster zaman, ister mekân içinde olsun; durmaksızın sonsuzluğun derinliklerine dalmak isteyen herhangi birisinin sabit noktalara ihtiyacı vardır; aksi durumda devinimleri durağanlıktan ayırt edilemez olur" diye yazıyordu. "Evrenini, her biri diğerini sonsuz bir sıra ile takip eden bölmelere ayırmalı; belli bir uzunluğun birimleri ile sınırlamalıdır."

    Figürlerin, merkezî bir birleşme noktasına doğru azalarak ama sürekli tekrarlayarak çizildiği birkaç resminden sonra, Escher tam ters yöne doğru ilerleyen bir azalmayı yaratacak yöntemler aradı. Sonsuza kadar tekrarlanan, kendini saran sınırlara daima yaklaşan, ama ulaşamayan figürler isterdi.

    Escher bir dörtgen içerisinde sonsuzluk yaratma sorusuna kendi çözümünü buldu. Her eleman bir başkasının belli bir ölçeğe göre küçültülmüş (ya da büyütülmüş) hali olduğu, sürekli tekrarlanan "kendi-benzer" bir şekiller kümesi yarattı.

    MORFOZLAR

    Eserin konseptinde bir resim (karesel) mozaik bir modele dökülür ki bu farklı bir resmin hatlarını oluşturur. Soldan sağa doğru eser İtalyan Atrani kasabasının betimlemesi ile başlar. Burada, sanatçının başkalaşımı, Çinli bir bebekle Amalfi kıyısında bir kuleyi bağlar.



    Sky and Water I 1938

    İlginç bir şekilde kendi benzer motifler belirsizlikleri Escher'i kesinlikle eğlendiren kesirli, daha doğrusu fraktal boyutlu figürlerin örneklerini teşkil etmektedir, 1965 yılında "Değişmez bilinmezliklerimizle oynamadan duramıyorum. Örneğin benim için iki ve üç boyutu, düzlem ve uzayı karıştırmak; yerçekimi ile alay etmek çok eğlenceli" diye itiraf etmişti.

    Escher, iki boyutlu çiftliğin gizemli bir başkalaşım sonucunda üç boyutlu kaza döndüğü "Day and Night" (Gündüz ve Gece) örneğinde olduğu gibi boyutları karıştırmak konusunda bir uzmandı.

    .
    Day and Night, 1938

    Noktayı, çizgiyi, düzlemi ve uzayı birbirinden ayıran kavram boyuttur. Boyut algısındaki belirsizlikleri vurgulamak için, üç boyutlu bir sahne bekleyen gözlemciyi aldatan Escher bu resmi kullanmıştır. Day and Night'ta aşağıdaki damalı tahta şeklindeki tarlalar, iki kaz sürüsü haline dönüşür. Resim aynı zamanda, resmin kesilmeden ya da katlanmadan şekil değiştirdiği, topolojik bir değişimi de anlatır. Resimde yansıma ve ikilik de vardır: siyah kazlar aydınlık bir kasaba üzerinde uçarken, beyaz kazlar aynı sahnenin gece görüntüsünde uçmaktadırlar.

    Genel bir görünüm oluşturmak için herhangi bir nesnenin farklı gözlem çerçevelerinden birkaç görünümünü birleştirmek gibi, panoramik çizim yöntemleri ile bilimin genel pratiğinde bulunan belirsizlikler ve çelişkileri belirtmekten de zevk alırdı.

    PARADOKSLAR

    Escher'in en vurucu işleri paradoks (çelişki) ve sonsuzluk kavramını işlediği resimleridir. İmkansız figürleri kullanarak inşa ettiği dünyalar bizi çelişkiye götürür. Döngüsel paradoksları yaratmak için kurduğu hiyerarşik düzenlerde sürekli yukarı ya da aşağı hareket etseniz de, hiyerarşinin gereğine rağmen, yine başlangıç noktasına gelirsiniz. Bu gibi döngüler Bach'ın müziğinde de yer alır. Bach müziğini bestelerken kanonlar sayesinde kurduğu döngüler içinde notaların harflendirilme sisteminden yararlanarak kendi adını sonsuz kere zikrettirir. D.R. Hofstadler ünlü Escher Gödel ve Bach adlı kitabında bu üç şahsiyeti döngüsel paradokslarda buluşturur. Bu yüzyılın en önemli matematik makalelerinden birini yazan Gödel, matematiği dizgeleştirme çabalarının sonuç vermeyeceğini, kendi içinden çıkıp kendine dönen bir paradoksun varlığını göstererek kanıtlamıştı







+ Yorum Gönder
matematiğin sanatla hayat bulması,  matematigin sanatla hayat bulmasi biraz kisa,  matematigin sanatla hayat bulmasi,  sanatta matematiğin yeri nedir
5 üzerinden 5.00 | Toplam : 1 kişi